
An Embedded System for Aerial Image Processing
from Unmanned Aerial Vehicles

Jonas Fernandes da Silva, Alisson V. Brito, José
Antônio Gomes de Lima

Centro de Informática
Universidade Federal da Paraíba (UFPB)

Cidade Universitária - João Pessoa - PB - Brasil
Email: jonas@ccae.ufpb.br, {alisson, jose}@ci.ufpb.br

Helder Nogueira de Moura
REINTEGRIS

Cidade Universitária - João Pessoa - PB - Brasil
helder@reintegris.com.br

Abstract- This paper proposes solution capable to process
aerial images from UAVs to identify failures in plantations and
makes a comparison of the system running on light sized
computers and low power computing platforms. An algorithm
was developed based on watersheds using OpenCV library. The
solution was embedded on X86 architecture (AlteraDE2i-150)
and Intel Edison boards as well as on ARM architecture
(Raspberry Pi 2). The results show that the proposed system is
a cost-effective solution for the problem of fault identification
in plantations, and can be embedded in UAVs for processing
images in real time.

Keywords- Embedded systems; UAV, Watersheds;

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) were initially

developed only for military applications, but now are
increasingly being used in various tasks, especially in
environments that offer a risk to life or where human
intervention is dangerous. Despite the reduction of
investment in UAV projects applied to national defense in
leading countries such as Germany, France and the USA,
resulting in a negative impact on the growth of the UAV
industry [1], the market is promising and fragmented
throughout the world with a significant number of small and
medium-sized companies.

In large areas of plantations, UAVs assist in monitoring
using aerial imaging and its usage is more and more often
due to savings generated by these devices, which eliminate
displacement of experts and reduces the response time to
identify problems. Its main advantage is the ability to travel
a considerable distance with safety, reduced time and at
lower cost compared, for example, using a helicopter. Some
environmental applications are described in [2], which uses
UAVs to detect infestation of Huanglongbingv (HLB), a
destructive disease found in citrus agriculture in Brazil; and
in [3] where UAV is used to monitor an agricultural region
to identify invasive weeds and abnormalities in irrigation.
Other studies report the use of UAVs for collecting digital
aerial imagery to detect unauthorized changes to the land,
such as deforestation [4], [5]. In most of these cases, the
identification does not occur automatically during the flight,
requiring human intervention for later analysis of the image,
either by an expert or software, as in [6], where digital aerial

images are obtained from a camera attached to a UAV in
order to create topographic mapping, in which aerial images
are available only after a few hours for analysis.

Thus, this work aims to develop and embed an algorithm
for image processing system capable of automatically
identifying failures in plantations, represented by high-
contrast areas on the image, and calculate an approximate
percentage of these areas in various types of vegetation. For
that it uses light-sized and low-power computers based on
x86 and ARM architectures. This work is relevant to present
a solution that perform dedicated tasks quickly, consuming
low power and with low cost. At same time, we aim to
contribute to the scientific community through the
performance comparison between computing platforms
presenting different options for other interested research
groups.

The proposed solution can be used to identify pests,
problems on the ground or boundaries in plantations. The
embedded system chosen must be coupled to an UAV
(developed in future works) where the agricultural
monitoring should be performed in real time during flight,
eliminating the need to download the images or landing,
enabling automatic diagnostics by UAV itself.

The Section II presents image-processing techniques.
Section III deals with the embedded systems used in this
study and describe software and hardware involved. Section
IV presents the experiments performed in the laboratory,
describing the used methods and achieved results. Finally,
section V brings final considerations.

II. MATERIALS AND METHODS
For aerial image processing, some techniques were used.

The thresholding technique consists in grouping the gray
levels and is described in [7], so that the image formed is
composed of light objects on a dark background so that the
pixels of the object and background are grouped into two
dominant groups.

The image expansion step is to remove small white
noises, filling holes in the image. The removal of residual
noise is based on the relative position between neighboring
pixels, and aims to unconnected pixels union of the same
intensity in the nearby areas, eliminating noise near the

regions of interest. The image segmentation step is the
separation of an input image into regions, in general, the
more accurate targeting, the greater the chances of success
in identifying regions of interest of the image [8]. Over the
years, various image segmentation algorithms were
developed. The technique used in this study is based on
watersheds, which is a popular image segmentation
algorithm and is based on the view of an image in three
dimensions, similar to a topography where there are two
spatial coordinates 𝑥 and 𝑦, and the height is equal to the
gray level of the corresponding pixel [9]. In this topographic
interpretation, a watershed can be imagined, where light and
dark spots represent hills and valleys in a landscape [10].
Water virtually covers the lower areas and the highest ones
are highlighted. These limits correspond to the dividing
lines of the dam, which are boundaries extracted by the
segmentation algorithm.

The application was developed using the OpenCV (Open
Source Computer Vision1) library, which is an open-source
library for computing vision. It is free and widely used by
companies, research groups and government agencies, with
support for various operating systems, for example,
Windows, Linux, MacOS and Android. Its primary focus is
the processing of real-time images [11], i.e., cites security
monitoring, analysis of biomedical images and even the use
by UAVs [12].

In this work, the developed application is tested in
embedded platforms evaluate the more suitable one. The
tested platforms are Altera DE2i-150, Intel Edison and
Raspberry Pi 2. These platforms promise high performance
and low power consumption.

The Altera DE2i-150 embedded platform is
manufactured by Terasic®. It is 250x170mm with 800g,
consisting of two main blocks: the first for general
processing through the Intel® Atom N2600 1.6GHz based on
x86 architecture. The second block ensures high flexibility
for projects through an Altera Cyclone IV FPGA. It has 2GB
DDR3 main memory, integrated GPU, 64GB SSD storage, a
VGA interface, HDMI, Wireless, Bluetooth, audio and
Ethernet.

 Intel Edison platform main characteristic is its small
size, with 60x28mm, including the communication
interface, and only 16g weight. It features an Intel Atom
Dual Core 500MHz processor based on the x86 architecture,
1GB DDR3 main memory and internal storage of 4GB. The
Intel Edison Breakout Board has Bluetooth communication
interfaces, wi-fi and USB.

Raspberry Pi 2 is based on ARM architecture and is
developed by Raspberry Pi Foundation. Its small size with
dimensions of 85x56mm and 42g weight allows use in
various applications. It has ARM7 900MHz Quad Core
processor, 1GB of main memory, and data storage support
via a micro SD slot. The platform includes USB
communication interfaces, HDMI and Ethernet, in addition
to connections for camera couplings and display. It also has

1 http://opencv.org

General Purpose Input / Output (GPIO) ports responsible for
input and output of digital communication through a set of
40 pins, allowing connection of sensors or other devices.

III. EXPERIMENTS
The images were acquired by an UAV, but processing

was further conducted in the laboratory by the embedded
systems. In future work, the system will be embedded in an
UAV for direct image capture and processing in real time.

The images were obtained by a remotely controlled
quadcopter model DJI Phatom FC-40 over an area of
environmental conservation and over an agricultural area.
The quadcopter has a camera attached with 1280x720 pixels
resolution. A group of fifteen images were selected and
added to the pictures database for power and performance
analysis.

The watershed technique presented in section II was
used for image processing. It is divided into five steps:
image acquisition, conversion to gray scale, thresholding,
image dilation, distance transformation and a second
thresholding step.

The second step is the conversion of the original image
(Fig. 3a) to grayscale (Fig. 3b). This facilitates the
thresholding executed in the next step. The grayscale
operation is done by cvtColor from OpenCV. Following, the
global thresholding technique is applied.

Proposed algorithm
 InputImage <- "inputImage.jpg"
 OutputImage<- "outputImage.jpg"
 FUNCTION BORDER (InputImage)
 Border<- FIND-BORDER (InputImage)
 FOR (k = 0; k < Border.Size; k ++)
 borderImage<- DrawContour (Border)
 FOR (x = 0; x < Border.Size; x ++)
 FOR (y = 0; y <Border.Size; y ++)
 Totalx<- Totalx + Border (XY).x
 Totaly <- Totaly + Border (XY).y
 END FOR
 AvgX <- Totalx / x
 AvgY <- Totaly / y
 END FUNCTION
 FUNCTION AREA(InputImage)
 FOR (y = 0; y<InputImage.Lines; y++)
 FOR (x = 0; x <InputImage.Columns; x++)
 IF ImagemOrigem (y, x) == 0
 IncBlack
 ELSE
 IncWhite
 END FOR
 END FUNCTION
 MAIN
 Image1 <- INPUT (InputImage)
 Image2 <- GRAY_SCALE (Image1)
 Image3 <- thresholding(Image2)
 Image4 <- DILATE (Image3)
 Image4 <- NORMALIZE (Image4)
 Image5 <- DISTANCE_TRANSFORM (Image4)
 Image6 <- thresholding(Image5)
 BorderImg<- BORDER(Image6)
 AREA (Imagem6)
 SAVE_FILE (OutputImage, Image6)
 END

Due to its simplicity, low computational power is
demanded. The thresholding function used in our
experiments value of 𝑇 = 200. That means pixels with
values lower than 200 are set to zero, otherwise to 255. That
results into a process called binarization (Fig. 1c). The
Threshold parameter 𝑇 should be defined for each type of
vegetation, due to intrinsic characteristics of each group of
images and to other factors such as light. Here, the
parameter T was defined from tests and observations.

The next step refers to dilation of the image, through the
use of function, dilate with parameter equal to three
iterations (Fig. 1d), whose goal is to join disconnected
pixels of same intensity in nearby areas. This is used for
further processing of the residual noise generated from the
thresholding step.

Fig. 1 - Original image (a),gray scale (b), thresholding (c) and

dilation (d)

The fourth step utilizes the function Distance Transform
of the dilated image. From a 3x3 matrix various points are
distributed according to the calculation of the distance from
the array center to the edge, resulting in a gradient image
(Fig. 4a). Finally, a further step of thresholding is performed
to filter the gradient levels generated from the previous step,
highlighting only the regions of interest (Fig. 2b). For this
step a threshold 𝑇 =0.35 was chosen since it brought
satisfactory previous results.

Fig. 2 – Images after application of distance transformation (a)

and thresholding (b)

Further, two other functions are used, the first uses
OpenCV findBorders that provides all the coordinates of the
pixels of the image boundary region. From that, the average
of the coordinates x and y are calculated in order to estimate
a central position of the failure spot on plantation. Thus, the
function drawBorders draws the boundary of the spot, as
shown in Fig. 3. A second function is intended to calculate
the total area of spots. As the image is binarized, with pixel

values of 0 or 255, the failure percentage is found by
calculating the frequency of occurrence of these values in
the image.

For example, the image shown in Fig. 2b, has 921,600
pixels (considering 1280x720 resolution), from which
53,062 pixels have value 255. This means a failure of 5.76%
of the image area. Furthermore, the system grouped the
spots into four areas presented in Fig. 3, marked as A1, A2,
A3 and A4.

Fig. 3 -Detected failure areas

The performance of the system running in different

architectures was evaluated using the execution time. The
results are presented in Table I. The same input images were
used for the three platforms and evaluated. As the used
functions are exact, the same output images were obtained.

Table II – Execution time running in embedded platforms
 Embedded Systems

DE2i-150
(sec.)

Intel Edison
(sec.)

Raspberry Pi 2
(sec.)

Image 1 0.484 1.203 0.899
Image 2 0.505 1.265 0.896
Image 3 0.508 1.301 0.917
Image 4 0.499 1.274 0.869

Average (15
images)

0.507 1.278 0.925

In order to reduce the table size, the results for only 4

images are presented in Table I. The average execution time
for all 15 images are presented in the last line of the table.
The results obtained were only based on code execution,
disregarding the compilation and image presenting times.
As expected, Altera DE2i-150 platform achieved better
performance than the other two platforms. Using it, the
average execution time was about 500 milliseconds. Using
Intel Edison images were processed on average in about 1.3
seconds, which is about 2.5 times slower than DE2i-150.
The Raspberry Pi 2 need about 920 milliseconds to process
the images on average, which is 1.8 times slower than DE2i-
150. This result could be improved, as micro SD card
number 4 was used, with throughput of 4 MB/sec, which is
lower than the others that use SSD internal storage. A faster
micro SD card might improve the results for Raspberry Pi 2.
The total time to process all 15 images by platforms DE2i-
150, Intel Edison, Raspberry Pi 2 was approximately 7.6,
20.7 e 16 seconds, respectively.

Regarding energy consumption, the current was
measured and registered by an external Arduino-based
circuit. A script was configured to collect the current at each

2 seconds. From the tests, it was observed that Intel Edison
consumed lower power than the other two, consuming on
average 120mA. This is about 8.2 times less than the highest
consumption platform, DE2i-150, and 2.4 times less than

Raspberry Pi 2. Altera DE2i-150 and Raspberry Pi 2
consumed on average about 990mA and 290mA,
respectively. A chart of power consumption is shown in Fig
6.

Fig. 6- Power consumption of embedded platforms during image processing

IV. FINAL CONSIDERATIONS
In this work, an image processing system was proposed.

The achieved results seem satisfactory, regarding the goal of
automatic identification of failure areas in plantations by
Unmanned Vehicles (UAVs). The system could be
embedded in small size and lightweight platforms, with
satisfactory execution time and lower power consumption.

Despite the high performance observed by Altera DE2i-
150 and the variety of available communication interfaces,
this is not suitable for the proposed system, due to its large
size and high power consumption, impeding its use attached
to the UAV used in this work. Intel Edison platforms (x86)
and Raspberry Pi 2 (ARM) are two possible platforms to be
embedded in an UAV, due to their small size, light weight
and low power consumption. The first presented several
advantages, such as smaller size, lighter weight and lower
power consumption, as well as having wireless
communication, being a strong candidate to be coupled to
an UAV, despite having a slightly lower performance
compared to the Raspberry Pi 2.

On the other hand, the Raspberry Pi 2 platform, in
addition to superior performance has other interesting
advantages, such as greater communication possibilities. It
allows an easy configuration, allows GUI and flexibility to
the inclusion of new devices via GPIO extension.

In this scenario, the most suitable platform to be used
will depend on the requirements of each application.
Considering this project, weight, size and power
consumption are more important than all other features, as
the goal is to embed in a UAV. Also, as the difference in
performance was only 350 milliseconds, Intel Edison
platform should be chosen used in this project.

REFERENCES
[1] C. Drubin, "The Global UAV Market 2015-2025," Microw.J.,vol. 58,

no. 3, pp. 53-54, Mar. 2015.

[2] LAC Jorge, ZN Brandão, and RY Inamasu, "Insights and
recommendations of use of UAV platforms in precision agriculture in
Brazil," Remote Sens. Agric. Ecosyst. Hydrol.XVI,vol. 9239, no.
2004, p. 923 911, 2014.

[3] S. . Herwitz, L.. Johnson, S.. Dunagan, R.. Higgins, D.. Sullivan, J.
Zheng, B.. Lobitz, J.. Leung, B.. Gallmeyer, M. Aoyagi, R.. Slye, and
J.. Brass, "Imaging from an unmanned aerial vehicle: agricultural
surveillance and decision support," Comput. Electron.Agric.,Vol. 44,
no. 1, pp. 49-61, Jul. 2004.

[4] LF Felizardo, RL Mota, EH Shiguemori, MT Neves, AB Ramos and
F. Mora-Camino, "Using ANN and terrain for UAV surveillance," in
13th International Conference on Intelligent Hybrid Systems
(HIS2013),2013 pp. 1-5.

[5] LF Felizardo, RL Mota, EH Shiguemori, MT Neves, AB Ramos and
F. Mora-Camino, "Expanding Small UAV Capabilities with ANN," in
Second International Conference on Image Information Processing
(ICIIP 2013),2013, pp. 516-520.

[6] A. Ahmad, KN Tahar, WS Udin, KA Hashim, N. Darwin, Hafis M.,
M. Room, NAM Hamid, Nurul Farhah Adul Hamid Azhar, and SM
Azmi, "Digital Aerial Imagery of Unmanned Aerial Vehicle for
Various Applications," in IEEE International Conference on Control
System, Computing andEngineering,2013, pp. 535-540.

[7] PL Rosin and E. Ioannidis, "Evaluation of global image thresholding
for change detection," Pattern Recognit.Lett.,Vol. 24, no. 14, pp.
2345-2356, Oct. 2003.

[8] RC RC Gonzalez and Woods, Digital ImageProcessing,3rded. São
Paulo, 2010.

[9] A. A. Bieniek and Moga, "An effcient watershed algorithm based on
connected components," PatterRecognit.,Vol. 33, pp. 907-916, 2000.

[10] A. Bleau and LJ Leon, "Watershed-Based Segmentation and Region
Merging," Comput. Vis. Imageunderst.,Vol. 77, no. 3, pp. 317-370,
Mar. 2000.

[11] TD Prasanthi, K. Rajasekhar, T. V Janardhana, and BV V
Satyanarayana, "Design Of ARM based Face Recognition System
using Open CV Library," vol. 1, no. 9, pp. 233-240, 2012.

[12] G. Bradski and A. Kaebler, LearmingOpenCV,First Edit. 2008.

