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Abstract

Background: An explicit justification of sample size is now mandatory for most proposals submitted to funding bodies, ethics committees

and, increasingly, for articles submitted for publication in journals. However, the process of sample size estimation is often confusing.

Aim: Here, we present a primer of sample size estimation in an attempt to demystify the process.

Method: First, we present a discussion of the parameters involved in power analysis and sample size estimation. These include the smallest

worthwhile effect to be detected, the Types I and II error rates, and the variability in the outcome measure. Secondly, through a simplified,

example ‘dialogue’, we illustrate the decision-making process involved in assigning appropriate parameter values to arrive at a ballpark

figure for required sample size. We adopt a hypothetical, parallel-group, randomized trial design, though the general principles and concepts

are transferable to other designs. The illustration is based on a traditional, power-analytic, null hypothesis-testing framework. In brief, we

also address sample size estimation methods based on the required precision of the mean effect estimate.

Conclusion: Rigorous sample size planning is important. Researchers should be honest and explicit regarding the decisions made for each of

the parameters involved in sample size estimation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

How many statistical advisors does it take to change a

light bulb? Three, one to change the bulb, one to check the

power, and one to assess the goodness-of-fit. Alternative

answers to this question include ‘two, plus or minus one’.

Clearly, humour and statistics are not comfortable bed-

fellows. Indeed, few subject areas strike more fear into the

hearts of novice and experienced researchers—and research

consumers—alike than the murky area of sample size

estimation and power analysis. In a recent editorial in this

journal, Zoë Hudson stated that (Hudson, 2003, p. 105):

There has been an ongoing debate between editors and

editorial boards of peer reviewed journals whether to
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accept articles with no or low statistical power. Indeed,

there has been a call by some journals to refuse articles

that do not contain a power analysis for the sample size

required to show a significant difference.

Statistical power is defined as the probability of

detecting as statistically significant a clinically or

practically important difference of a pre-specified size, if

such a difference truly exists. Formally, power is equal to

1 minus the Type II error rate (beta or b). The Type II

error rate is the probability of obtaining a non-significant

result when the null hypothesis is false—in other words

failing to find a difference or relationship when one exists.

In sample size planning, beta is fixed in advance to ensure

an adequate probability of detecting a true, clinically

relevant effect of a given size. These issues are discussed

in detail subsequently. The aim of this primer article is to

present a sketch of the theory and practice of power

analysis and sample size estimation and, hopefully, help

to demystify the process and alleviate some of the

attendant trepidation.
Physical Therapy in Sport 6 (2005) 153–163
www.elsevier.com/locate/yptsp

http://www.elsevier.com/locate/jnlabr/yptsp


A.M. Batterham, G. Atkinson / Physical Therapy in Sport 6 (2005) 153–163154
From the outset, we would like to emphasise our deliberate

use of the term ‘sample size estimation’, rather than ‘sample

size calculation’. Although the arrival at a number for the

required sample size is invariably based on (often complex)

formulae, the term ‘calculation’ implies an unwarranted

degree of precision. Indeed, as noted by Williamson, Hutton,

Bliss, Campbell, and Nicholson (2000, p. 10):

Their (sample size formulae) purpose is not to give an

exact number, say 274, but rather to subject the study

design to scrutiny, including an assessment of the

validity and reliability of data collection, and to give

an estimate to distinguish whether tens, hundreds, or

thousands of participants are required.

Such sentiments echo those of biostatistician and clinical

trials expert Stephen Senn (1997), who described power

calculations as “a guess masquerading as mathematics”.

Pocock (1996) commented that sample size estimations

are “a game that produces any number you wish with

manipulative juggling of the parameter values” (as we

demonstrate subsequently in this article). Unfortunately, in

our experience this ‘game’ is played all too frequently. A

common scenario is the following. A researcher or research

team decide, on practical grounds, on the maximum number

of participants that can be recruited and measured. Later,

when faced with the increasingly common demands (from

ethics committees, grant awarding bodies, journal editors,

and the like) for a fully justified written section on sample

size estimation, they approach a statistical advisor for

assistance. As we discuss later in this article, one of the key

parameters in sample size estimation is the minimum

clinically important difference (MCID)—the smallest effect

worth detecting that is of clinical significance. In our

‘common scenario’, a relatively large MCID may be

selected that ‘justifies’ the sample size chosen (smaller

sample sizes are required to detect larger effects). We

believe that this manipulative rearrangement of the sample

size estimation equations is unethical. In the profession, this

approach is said to involve replacing the clinically

important difference with the cynically important difference.

Use of the cynically important difference in sample size

justifications may lead to underpowered studies and the

increased probability that some clinically beneficial inter-

ventions will be dismissed as ‘non-significant’ (a Type II

error). To return briefly to Zoë Hudson’s editorial comments

on this matter, where does this leave us? Everitt and Pickles

(2004) argue that the case against studies with low numbers

of participants is strong, though they concede that with the

growing use of meta-analysis there may still be a place for

smaller studies that are otherwise well-designed and

executed. We agree with the opinions of Williamson et al.

(2000, p. 10) that “all proposals should include an honest

assessment of the power and effect size of a study, but that

an ethics committee need not automatically reject studies

with low power”. However, proper sample size estimation is
often regarded as an ethical sine qua non, helping to avoid a

waste of resources and/ or the subjecting of participants to

potentially ineffective (and possibly harmful) interventions

due to samples that are too small or, less frequently, larger

than necessary. Moreover, the process of sample size

estimation helps to clarify one’s thoughts at the outset with

respect to what is the central research question, what is the

primary outcome variable, what are the secondary outcome

variables, and what is the proposed analysis strategy?

The steps involved in the sample size estimation process

can, therefore, help develop and refine the research design

and methods for the study. The theory and practice

underlying these steps is outlined in the first substantive

section of this primer. In the second section, we illustrate the

‘dialogue’ and decision-making involved in arriving at a

sample size estimation using a worked example. We restrict

our discussion to estimations carried out before the study is

conducted. Although not uncommon, we believe that

conducting power analyses once the data have been

collected is largely redundant. At this stage, power is

appropriately and more effectively illustrated by the

calculation and presentation of confidence intervals for the

effect of interest (Wilkinson, 1999).
2. Considerations for a statistical power analysis

In the first part of this primer, we concentrate on the

factors that influence statistical power and required

sample size. We will not delve too much into the

underlying mathematics in view of the availability of

specialist sample size estimation programs such as

nQuery Advisorw (Statistical Solutions, Cork, EIRE),

sample size and power options in popular software

packages including Stataw, SASw, and StatsDirectw, as

well as published tables and nomograms (Machin,

Campbell, Fayers, & Pinol, 1997). Rather, we consider

each factor in turn with the aid of Table 1, which is

designed to illustrate the impact of changing various

study factors on required sample size. Our ‘baseline’

hypothetical situation for comparison is detailed in

column A of Table 1. In column A, we start with a

hypothetical two-sample design, which might involve the

comparison of mean changes in pain scores between an

intervention and a control group (e.g. measured using a

continuous or categorical Visual Analogue Scale). With

this design and using an independent t-test with a 0.05

two-sided significance level, a sample size of 23 in each

group will have 90% power to detect a difference in

mean change in pain of 1 unit, assuming that the

common standard deviation is also 1 unit. We emphasise

at this stage that a difference of one standard deviation in

mean pain score change is a relatively large effect. A

larger sample size would be needed to detect smaller,

potentially clinically important, effects.



Table 1

The effects of changing various terms in a statistical power calculation

A B C D E F

Test significance level (alpha) 0.05 0.05 0.05 0.05 0.05 0.05

1 or 2 sided hypothesis 2 2 1 2 2 2

Difference in means (d) 1.00 1.00 1.00 2.00 1.00 1.00

Common standard deviation (SD) 1.00 0.45 1.00 1.00 2.00 1.00

Effect size (d/SD) 1.00 2.22 1.00 2.00 0.50 1.00

Statistical power (%) 90 90 90 90 90 80

Sample size per group 23 5 18 7 86 17

95% CI assuming a constant

sample size of 23 subjects

0.33–1.67 0.70–1.30 0.44–1.56 1.33–2.67 K0.12–2.12 0.46–1.54

Changed terms are shown in bold. A, Independent t-test for two-group comparison; B, The effect of changing design to a repeated measures (paired t-test); C,

The effect of changing to a one-sided hypothesis of interest; D, The effect of increasing the difference in means to be detected; E, The effect of increasing the

data variability; F, The effect of reducing the required statistical power (an increase in beta).
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2.1. Research design

Generally, research designs involving correlated data

(e.g. repeated measures or crossover designs) are associated

with greater statistical power than those involving separate

samples allocated to different treatment groups. This

relative improvement in statistical power is mediated by

the magnitude of the ‘variability’ (standard deviation) term,

which is entered into the calculations. For example, the data

in column B of Table 1 represent what would happen if the

two-group design were replaced with a repeated measures

analysis involving the paired t-test. Assuming that such a

design generates data that are correlated to a degree of

rZ0.9, then the standard deviation of the pairs of changes

would be 0.45 instead of 1 unit. This would increase the

effect size (in this case defined as the mean difference

divided by the standard deviation of the paired differences)

to 2.22, and hence fewer subjects (nZ5) are required to

detect this larger effect size. Similarly, with a repeated

measures design, the smaller standard deviation associated

with correlated data would lead to a narrower (more precise)

95% confidence interval for the mean difference between

pain change scores (Table 1).

The decreased variability associated with a repeated

measures design suggests that it may be sensible to adopt

this approach when such a design matches the research

question. Nevertheless, it is often difficult to do this, since a

treatment might have long-term residual effects on the

primary outcome variable. For example, it is virtually

impossible to adopt a repeated measures design to

investigate the efficacy of a physical therapy intervention

on functional outcomes with participants who have a

pre-existing injury. A research design that is worth

considering by physical therapists in such situations is the

matched-pairs approach, since these designs might generate

correlated data for analysis, as well as generally reduce

variability in the data (Atkinson & Nevill, 2001). A

matched-pairs design might involve matching participants

in a treatment group and a control group for any intervening

variables, such as age or body mass, or the baseline

measurements might be used to match participants.
If matching of participants for intervening variables or

pre-intervention measurements is not possible, one can still

improve statistical power by entering these variables as

covariates in the analysis (Vickers & Altman, 2001).

It is also worth mentioning that an ‘unbalanced’ research

design might require a larger total sample size, all other

factors being equal. That is, if it was only possible (or was

desirable) for some reason to recruit half as many

participants for the intervention group than the control

group (or vice versa), then statistical power would be lower

(for the same total sample size) compared to the scenario in

which group sizes were equal (Whitley & Ball, 2002). For

example, consider a two-group trial in which 50 participants

were required in each group (total NZ100) to obtain the

desired power to detect the smallest worthwhile effect. If

this total sample size of 100 were maintained, but there were

70 participants in one group and 30 in the other, then the

power would be lower than that in the ‘balanced’ design.

Together with this statistical power issue, one should also

scrutinise whether sampling bias is apparent if groups are

unequal in size; i.e. any systematic factor which has led to

the ratio of sample sizes being other than one should be

considered.

2.2. Question of interest

Researchers seldom rationalise the choice of a one-tailed

or two-tailed hypothesis or confidence interval (Atkinson &

Nevill, 2001; Knottnerus & Bouter, 2001). One-tailed

analyses are selected when the hypothesis or question of

interest is directional (e.g. a decrease in rating of pain in

response to some intervention is hypothesised), whereas two-

tailed analyses are chosen when the hypothesis of interest

centres on a change, irrespective of direction. Atkinson and

Nevill (2001) argued that a one-tailed analysis might be

employed when the researcher is only interested in

enhancement of a functional performance outcome per se,

and that performance outcome is directly measurable. The

rationale is that a certain treatment would not be adopted if it

either did not change, or actually decreased, functional

performance. Therefore, a directional alternative statistical
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hypothesis would be appropriate in this case (Knottnerus &

Bouter, 2001). However, Altman (1991) stated that in the

vast majority of cases the two-tailed procedure is the more

correct one, and that even when we strongly suspect that

a treatment can only lead to changes in one direction, we

cannot be certain. Furthermore, knowledge of significant and

substantial changes in the opposite direction (‘harm’ as

opposed to benefit in an intervention study) is also important.

Importantly, one-tailed inferential statistics offer a gain

in statistical power over the corresponding two-tailed

analysis (Peace, 1988; Rice & Gaines, 1994). One can see

from column C in Table 1 that a one-tailed rather than a two-

tailed analysis has been selected. This change is estimated to

result in five fewer participants being required for the

research. The 95% confidence interval also becomes

narrower. However, we believe that there must be a

compelling rationale for conducting one-sided tests of

significance, and that this decision must be made before the

data are analysed. Conducting a one-tailed test after failing

to find significance with a two-sided test represents an

unethical and largely pointless fishing expedition.

2.3. Effect size

Generally, the bigger the size of effect to be detected, the

greater the statistical power is for a given sample size and

within-subject variability. In column D of Table 1, the

difference between treatment and control groups in the mean

change of pain ratings has been doubled to two units. The

standardised effect size also doubles leading to a substantial

reduction of estimated sample size. Note that the lower limit

of the confidence interval is higher than previous lower

limits. This is interpreted as evidence that the population

mean change is greater than 1 unit. Therefore, although the

width of the confidence interval has not changed, the fact that

the hypothesised mean change is two rather than 1 unit leads

to greater probability that the population mean is not zero.

One of the most difficult, and yet critical, aspects of

sample size estimation is the a priori selection of effect size

(Atkinson, 2003). The most accurate predictions of effect

size are obtained from past and related studies involving a

similar intervention and the same outcome variable or from

one’s own preliminary studies or pilot work. It is also good

practise to choose an effect size on the basis of expert

opinion or data on the minimum clinically important

difference or correlation. For example, Hopkins, Hawley,

and Burke (1999) delimited worthwhile effect sizes for

athletic performance variables on the basis of the likelihood

of winning a medal at major championships. Approaches

linking magnitudes of effect with associated clinical or

practical endpoints are known as ‘anchor-based’ methods. It

is also important to appreciate that delimited effect sizes

may differ according to the type of intervention that is

introduced to the participants. For example, a very invasive,

time consuming or expensive intervention might lead to the

selection of a larger effect size than a simpler intervention.
This idea of weighing up the cost of treatment to the

magnitude of benefit is encapsulated in the “Number

Needed to Treat” philosophy of effect size and statistical

power estimations (Dalton & Keating, 2000).

In the absence of any robust anchor-based information on

the clinically or practically worthwhile effect size, one can

turn to ‘distribution-based’ methods using generalised ‘cut-

off’ values for effect size. Cohen (1988) suggested

standardised effect sizes (mean difference divided by the

between-subject standard deviation) of 0.2, 0.5 and 0.8 as

representing ‘small’, ‘moderate’ and ‘large’ effects, respect-

ively. An oft-quoted recommendation is to default to a Cohen

effect size (d) of 0.2 for the smallest worthwhile effect, in the

absence of robust evidence. Powering a study to detect this

small effect has a dramatic impact on the estimated sample

size required. Assuming two groups with an alpha of 0.05 and

90% power in a two-sided test would require 527 participants

in each group. It should be noted that such generalised effect

sizes were formulated with the social sciences in mind, for

which there may be no directly measurable variable that can

be used to appraise practical significance.

It is also worth noting that in repeated measures designs,

the effect size generated by dividing the mean difference by

the standard deviation of the change scores is not strictly

interpretable according to the thresholds for Cohen’s d of 0.2,

0.5, and 0.8 described previously. These thresholds are based

on fractions of a between-subject standard deviation, not

within-subjects variability. As discussed in detail by

Cumming and Finch (2001), to assess the size of an effect

by standardising the effect size by the standard deviation of

the change scores does not make substantive sense.

Arguably, the natural frame of reference for thinking about

a change in pain scores, for example, is the estimate of the

population standard deviation indicated by the between-

subject variance in the sample at baseline (post-intervention

variability may well be inflated due to individual differences

in response to treatment). The standard deviation of the

change scores is required, however, for sample size

estimations based on a paired t-statistic.

2.4. Variability

The variability in the primary outcome measurement

influences sample size estimations. For the two-group

comparison example in Table 1, if the between-subjects

standard deviation is increased from 1 to 2 units, then

sample size increases to 86 participants per group (column

E). The philosophy is that the more ‘noise’ there is in the

data, the more subjects are required in order to detect

the ‘signal’ of a given mean difference.

For ‘within-subjects’ or ‘repeated measures’ designs, the

standard deviation of the changes or the differences is

the important statistic (Atkinson & Nevill, 2001). In this

respect, there is a direct link between statistical power and

the test–retest variability of the outcome measurement

(Atkinson & Nevill, 1998). Poor test–retest repeatability for
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Fig. 1. A nomogram to estimate the effects of measurement repeatability error on whether ‘analytical goals’ are attainable or not in exercise physiology

research. Statistical power is 90%. The different lines represent different worthwhile changes of 1, 5, 10, 20 and 30% due to some hypothetical intervention.

The measurement error statistics, which can be utilised are the LOA and CV. For example, a physiological measurement tool, which has a repeatability CV of

5% would allow detection of a 5% change in a pre-post design experiment (using a paired t-test for analysis of data) and with a feasible sample size

(approximately 20 participants).

Table 2

The mathematical relationships between the standard deviation of the

differences and various measurement error statistics

Statistic Formula

Standard error of measurement

(SEM)

SDdiffZO2!SEM

Coefficient of variation (CV) and

grand mean (!) of data

SDdiffZO2!(CVO100!grand

mean)

Limits of agreement (LOA) SDdiffZLOAO1.96

Pearson’s correlation coefficient

(r) and between-subjects standard

deviation (SDB)

SDdiffZO(2!SDB2–2!r!
SDB2)

Mean square error (MSE) term

from repeated measures analysis

SDdiffZO(2!MSE)
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the outcome variable would mean, again, that a greater

sample size is required in order to detect a given change

over time. In Fig. 1, a nomogram is presented to show the

relationship between test and retest variability (described

with the coefficient of variation or limits of agreement

statistics) and required sample size. With the nomogram,

one can predict whether the test–retest variability of the

outcome variable is so high that the required sample size for

a simple, two-condition repeated measures experiment

becomes impractical.

A common sample size calculation involves the paired

t-test as the choice of statistical analysis (e.g. for comparing

functional performance between two experimental con-

ditions). The statistic, which represents the variability of

measurements and which would be used in the sample size

calculations in this case is the standard deviation of the

differences. Table 2 presents the mathematical relationships

between the standard deviation of the differences and

various popular test–retest error statistics. Readers might

like to refer to Table 2 when they are attempting to arrive at

a general value for the variability component in the sample

size calculation, and if several studies have cited different

measurement error statistics.

Altman (1991) noted that an estimate of the standard

deviation of the differences is frequently not available. As

noted, a handle on this variability may be gained by

examination of reported test–retest measurement error

statistics, though technically it is the standard deviation of

the changes expected (treatment condition minus control

condition) that should form the denominator for the effect

size informing the sample size estimation. Ideally, this is

best estimated from prior substantive studies, or preliminary

or pilot studies.
2.5. Alpha and beta

Consider a scenario in which we compare measurements

for a primary outcome variable in two independent groups

using, say, an independent t-statistic. The observed mean

difference between groups is 10 units, with a P-value for the

t-statistic of 0.001. Formally, this P-value is the a posteriori

likelihood that we would have observed an effect as large

(or larger) than 10 units under the assumption that the null

hypothesis is true (Devane, Begley, & Clarke, 2004). This

P-value indicates that we would observe a difference of 10

units or greater only one time in a thousand, assuming that

the null hypothesis is true. Therefore, in this instance the

null hypothesis is implausible, because the effect we

observed would occur by chance only very rarely. Sterne

and Smith (2001) suggest that P-values measure the strength

of the evidence against the null hypothesis—the smaller the

P-value, the stronger the evidence. However, the P-value

does not provide the probability that the null hypothesis is
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true, because in standard frequentist statistics it can only be

calculated by assuming that the null is true. Whether or not

the observed difference is clinically important as well as

statistically significant is another issue that cannot be solved

by interpretation of P-values alone.

How does one decide whether the a posteriori P-value for

the effect indicates a result that is sufficiently rare to warrant

rejection of the null hypothesis? The statistician and

geneticist R.A. Fisher was the first to advocate a cut-off

level of significance (‘alpha’, a) of 5% (PZ0.05) as a

standard criterion for suggesting that there is evidence

against the null hypothesis. Fisher (1950, p. 80) suggested

that:

If P is between 0.1 and 0.9, there is certainly no reason

to suspect the hypothesis tested. If it is below 0.02 it is

strongly indicated that the hypothesis fails to account

for the whole of the facts. We shall not often be astray

if we draw a conventional line at 0.05.

Although it was not Fisher’s intention, his approach was

subsequently modified into the ubiquitous, inflexible,

‘yes/no’ type decision making for statistical hypothesis

tests based on an arbitrary alpha value. If a priori, we choose

to adopt an alpha value of 0.05 then we are willing to accept

a 5% probability of falsely rejecting a true null hypothesis

(a Type I error or ‘false alarm’). We reiterate that there is

nothing special about an alpha level of 5%. It was Fisher’s

belief that the researcher should critically interpret the

obtained P-value and not use the a priori alpha value as an

absolute decision rule (Sterne & Smith, 2001).

Like effect size, the choice of alpha for sample size

estimations may depend on the research circumstances. For

example, it might be preferable in some circumstances to

adopt a more cautious approach to rejecting the null

hypothesis by selecting a smaller value of alpha. Such a

decision would mean that a larger sample would be needed

(all other factors being equal). Conversely, a larger value of

alpha might be selected when false rejection of the null

hypothesis is not as serious an error, for example, if the

intervention is easily adopted by patients and there is little or

no risk of harm. A related issue in the confidence interval

approach to arriving at study conclusions is the choice of

coverage. A common coverage for a confidence interval is

95% (0.95), but this probability is again arbitrary. The

adoption of a 99% confidence interval may be warranted if

precision of knowledge about the population difference or

change is more important (e.g. for very invasive or expensive

interventions, or those with the potential for harmful side-

effects).

Fisher’s approach was concerned primarily with the risk

of Type I errors. In sample size estimation, the probability

(‘beta’) of a Type II error—failing to reject the null

hypothesis when the treatment truly works (a ‘failed

alarm’)—is also a required parameter. Statistical power is

calculated by subtracting beta from 1. There is less
convention surrounding the required power than for alpha

values, but a now commonly selected value of beta is 10%

(0.1), giving statistical power of 90% (0.9). A power of 80%

is usually regarded as the minimum acceptable. Note the

value of beta is conventionally larger than alpha, a situation

ascribed to the natural conservatism of scientists (Machin

et al., 1997). A researcher might be willing to be less

conservative in falsely concluding that there are no

differences or changes present by increasing beta to 20%

and hence decreasing the selected level of statistical power to

80% (column F of Table 1). A reduction in sample size results

in this situation. The aim of fixing alpha and beta in advance

is to decrease the number of mistakes made. In the planning

of clinical trials, appropriate selection of alpha and beta help

to ensure that the study is large enough to minimise the risk of

recommending ineffective interventions (Type I error) and of

rejecting interventions that may well be beneficial (Type II

error). Kelley, Maxwell, and Rausch (2003) argued that the

widespread inattention to these issues has led to a situation in

which the probability of a Type I error (say 5%) is only

slightly lower than the probability of correctly rejecting the

null hypothesis (power). Combined with the well-documen-

ted publication bias effect this suggests that a substantial

proportion of significant findings in the published literature

may be Type I errors. We recommend that a range of powers,

alphas, and effect sizes be used to estimate required sample

size to overcome the tendency for a single estimate being

regarded as absolutely definitive (Wilkinson, 1999).
3. Illustrative examples of the sample size estimation

decision-making process

In this section, we present a brief example of a simplified

‘dialogue’ illustrating aspects of the decision-making

process involved in estimating the required sample size in

a typical study scenario (though the fundamental concepts

and principles extend to any research design). The design

presented is a parallel-group randomised controlled trial.

We issue the caveat that the scenario is for illustrative

purposes only and is not based on a systematic review of the

literature in the topic area presented.

3.1. The sample size estimation dialogue

Alan has approached Greg for advice regarding the

planning of a trial examining the effect of a complex

intervention (synergistic vitamin and mineral supplement

combined with physiotherapy) on recovery from a particular

musculoskeletal injury. Before investing time on the sample

size estimation, the primary question of interest is “is the

study worth conducting?” Hopefully, the research team will

have already firmly established the rationale and justifica-

tion for the proposed work, and answered this “so what?”

question. If not, it is worthy of discussion at this point before

proceeding further.
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Greg. So, Alan, you say you are interested in recovery

from injury in this trial. Could you be a little more specific?

What aspect of recovery are you most interested in—in

other words what’s your primary outcome variable?

Alan. In this study, we are mainly concerned with self-

reported pain, which we are convinced we can measure

validly and reliably using a Visual Analogue Scale before

and after the intervention.

Greg. OK, let’s assume that pain score is the primary

outcome variable. It’s customary to power the study on that

variable. We’ll also need to discuss the length of the

intervention, and when the post-intervention measures are

being taken, that is, immediately following or after

some follow-up period. For now, though, what is the effect

of the intervention being compared with or to?

Alan. We are planning to have a control group receiving

so-called ‘usual care’ for the injury, that is, standard

physiotherapy. We want to see if our specially formulated

nutritional supplement combined with physiotherapy is

superior to standard care.

Greg. OK, so we have a two-group controlled trial, with

injured participants randomly assigned to a combined

supplement and physiotherapy intervention or to ‘usual

care’. We have not addressed this yet, but we will also need

to discuss who the participants are, that is, where are they

coming from and what are the eligibility criteria for the

trial? Let’s review, where we are at present. I now have

essential background information according to what is

sometimes known as the PICO framework for trial

planning—Participants, Interventions, Comparisons, and

Outcomes. There are a few more decisions we need to

make before we can get an estimate of the numbers required

for this trial. Do you have a feel for what you would

consider to be the smallest clinically worthwhile effect? In

other words, what difference in mean pain scores would you

regard as clinically important and why? One of my

colleagues, Professor Will Hopkins, remarked in a

symposium presentation at the American College of Sports

Medicine Annual Meeting 2004, that “if you can’t answer

this question, quit the field”! For some outcome variables,

though, pinning down the smallest worthwhile effect is not

that easy.

Alan. OK. That’s a difficult one. This intervention is

relatively novel, so there isn’t much specific literature out

there on which to base a decision. There has been some

work on the improvement in self-reported pain scores that

people consider meaningful, that is, a change that makes a

difference to their quality of life or ability to undertake

routine activities that they can detect. This change is

typically about 10 units on our scale. We have also

conducted a preliminary study on a small sample of injured

participants, which confirms this figure So, I would say a

change of 10 units, compared to usual care would be our

minimum clinically important difference. Our discussions

with colleagues and clinicians also support the validity of

this figure.
Greg. OK, good. Now we need some handle on the

within-group variability in pain scores for this primary

outcome variable. What does the literature and your

preliminary data suggest as an estimate for the between-

subject standard deviation for pain score?

Alan. The SD is about 20 units, typically, in studies of

this type.

Greg. OK, so our standardised effect size that we

consider the smallest effect worth detecting clinically is

about half a standard deviation. We need a few more bits of

information and we’re ready to go. We need to decide in

advance on the risk we are prepared to accept of making

Type I and II errors, and on whether we are adopting a one-

or two-sided test of significance. First, is there any

compelling rationale for adopting a one-sided test?

Alan. None that we can think of. This is a novel, complex

intervention and we would not be certain that it could only

result in an improvement compared to conventional care. To

play it safe we believe that a two-sided test is more

appropriate in this instance. We are also interested in the

mechanisms of action of the nutrient supplement and feel

that if the intervention actually worsens pain rather than

improves it, then we need to investigate this further from a

mechanisms perspective.

Greg. OK, all that remains is to decide on the alpha

values and the required power. I suggest that we conduct a

range of estimations based on alpha values of PZ0.05 and

0.01, and power of 80 and 90%, to get a feel for the numbers

we might need. We can take our standardised effect size of

half a standard deviation and use the nomograms, we

discussed earlier. Alternatively, we can sit and input the

parameter values we have agreed upon in a sample size and

power software package. Finally, is there any reason why

we can’t aim for an equal number of participants in each

group?

Alan. No, we don’t anticipate any major obstacles. Our

experience in this field suggests that when the control group

is an ‘active control’, that is, they get some treatment in the

form of ‘usual care’, then there are few problems with

recruitment and obtaining consent for randomisation.

Greg. Excellent. Let’s conduct the estimations assuming

that the data are suitable for parametric analysis. The

outcome of interest would seem to be the difference in post-

intervention pain scores between the two arms of the trial,

which we will plan to analyse with an independent

t-statistic, together with a confidence interval for the mean

difference. We will further assume that with a reasonable

sample size, and effective participant sampling and

randomisation, there will be no substantial difference

between the groups at baseline. However, assuming there

is no substantial regression to the mean, we will explore

the potential merit in using a t-statistic for differences

between groups in the change scores (post-intervention

minus pre-intervention). An alternative analysis allowing

for chance baseline imbalances would be an Analysis of

Covariance (ANCOVA), with the post-intervention scores
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as the dependent variable, a nominal group variable as the

independent variable, and the baseline scores as a covariate.

When we have generated the sample size estimates, we can

then discuss what evidence there is to help us predict the

potential attrition or loss to follow-up in such a trial, plus

any anticipated potential problems with compliance. Often,

because of these factors we will need to recruit additional

numbers to those estimated to ensure we have a sufficient

sample size in the end. This is a very important issue, as

heavy losses to follow-up can result in being unable to

detect clinically worthwhile effects. In the absence of solid

information, an arbitrary cushion of an additional 10% is

often adopted, but researchers must employ a range of

strategies to maximise compliance and minimise attrition.

OK, let’s come up with some numbers and then make some

decisions on the targets for recruitment.

3.2. The results of the sample size estimations

The estimations were conducted using the nQuery

Advisor 5.0 software package (Statistical Solutions, Cork,

EIRE). For an alpha level of 0.05, sample sizes of 64 and 86

participants per group would provide 80 and 90% power,

respectively, to detect as statistically significant a standar-

dised effect size of 0.5 standard deviations. At an alpha level

of 0.01, sample sizes of 96 (80% power) and 121 (90%

power) participants per group would be required to

distinguish the minimum clinically important difference

from the statistical null (zero effect of the intervention

compared to the control).

Greg. As you can see, we have estimates ranging from

64 participants per group to 121. Let’s return to the alpha

and power values discussion. As you know, these decisions

are not etched in stone. From your experience of research

ethics committees and funding bodies in this field, are there

any firm conventions or expectations regarding the alpha

and beta values?

Alan. In recent years, experience suggests that there is an

increasing trend to regard power of 80% as insufficient to

guard against the risk of a Type II error. I would feel more

comfortable with 90% power, giving us only a 10% chance

of rejecting a treatment that actually is beneficial. We

believe that this type of intervention has enormous potential,

so we want a reasonably low probability of missing a

beneficial effect if it exists.

Greg. That sounds sensible. What about the alpha value?

Alan. We are happy with 0.05. If it was good enough

for Fisher it’s good enough for us! There is little or no

risk of harm in this treatment, and the economic cost is

reasonable compared with standard care, so a false

positive result would not be a disaster. We are

comfortable with only a 1 in 20 chance of finding the

treatment to be beneficial when in fact it is not. An alpha

of 0.01 would seem unnecessarily cautious given the

nature of the intervention and the participants likely to be

subjected to it.
Greg. So, that leaves us with an estimated sample size

(two-sided test, alpha at 0.05, power at 90%) of 86

participants in each group. This will allow us to detect a

pre-defined clinically important effect of 0.5 standard

deviations.

Alan. Yes, and based on my knowledge of the field I

think a 10% figure for potential loss to follow-up is realistic.

In our previous work, we have not had any major issues with

compliance or attrition. The participants tend generally to be

highly motivated, typically. As a crude approximation, if I

divide 86 by 0.9 to allow for 10% attrition, that gives me a

target of 96 in each group.

Greg. Yes, it’s only a ballpark figure, so let’s round it up

to a target of 100 participants in each group. As you have

said in your justification for the study, the injury you are

studying is fairly common in this population, and you have

good access routes to the required sample. As planning

progresses, if there are anticipated problems with accrual of

participants we may need to consider using more

recruitment centres. Incidentally, as a rough back-of-the-

envelope calculation for these two-group designs (with

alpha at 0.05 and power at 90%), the required total sample

size is approximately 42 divided by the standardised effect

size (ES) squared. So, in your case this would be 42/0.52,

which is 168 participants or 84 per group-close to the

estimate we got from the software. For 80% power and

alpha equal to 0.05 the formula is 32/ES2.

3.3. Assumptions for the examples presented

The sample size estimation examples provided in the two

main sections of this primer are based on a planned

parametric statistical analysis framework. All else being

equal, parametric tests are more powerful than their

nonparametric analogues. Formulae for sample size esti-

mations for nonparametric tests are also available. For these

‘distribution free’ tests, essentially the same decisions are

required regarding Types I and II error rates, one-sided

versus two-sided tests, and the effect size worth detecting.

For the scenario presented in the example dialogue, the

effect size for a nonparametric counterpart of the

independent t-test (Mann–Whitney test) is expressed as

the probability that an observation in the intervention group

is larger than an observation in the control group (Noether,

1987). The null hypothesis here is that this probability is 0.5,

i.e. a 50/50 chance implying that the two groups are

effectively from the same population with respect to the

outcome variable.

Pain scores assessed through a Visual Analogue Scale

(VAS) represent the primary outcome variable in the

example presented. We acknowledge the debate surround-

ing whether assumptions of normality, and interval-ratio

level of data hold for VAS data, and thus whether

parametric tests are strictly valid. However, we side with

the developing consensus that such data can be analysed

appropriately using parametric statistical techniques
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(Dexter & Chestnut, 1995; Kelly, 2001). This recommen-

dation also applies to the examples presented in the previous

main section, using unit changes in pain scores analysed

using an independent t-statistic, as Dexter and Chestnut

(1995) reported that the power to detect differences between

groups was not less for a categorical VAS than for a

continuous VAS.
4. Estimation approaches to sample size planning:

A thumbnail sketch

This section outlines an alternative approach to sample

size planning, based on precision of estimation of

experimental effects. It is intended to illustrate the

fundamental principles of this strategy for those readers

wishing to advance their knowledge. If preferred, readers

may skip this section and proceed to the conclusion without

loss of coherence.

The methods for sample size estimation discussed thus

far in this primer are based on the traditional power analytic,

hypothesis-testing approach. The aim of this method is to

obtain sufficient power to distinguish a pre-specified effect

from the null hypothesis. With respect to data analysis and

presentation of results, readers will doubtless be aware that

in recent years there has been an increasing trend towards

adopting an ‘estimation’ approach, rather than an over-

reliance on tests against the null hypothesis (see, for

example, Altman, Machin, Bryant, & Gardner, 2000). This

approach, which we applaud, involves the calculation and

presentation of confidence intervals (usually 95 or 90%)

interpreted generally as the likely range for the ‘true’ effect

in the population from which the sample was drawn. The

confidence interval approach facilitates the interpretation of

the clinical, practical, or mechanistic significance of

findings, depending on the context.

Due to the increasing popularity and relevance of this

estimation-based method, attempts have been made to

extend this thinking into sample size estimation. Instead of

specifying power to distinguish a given effect size from the

statistical null, these methods require the pre-specification

of a target confidence interval width. For the example given

in the previous section, of a minimum clinically important

difference of 10 units on the pain scale, we could, for

instance, specify a target 95% confidence interval width of

20 units. The sample size that would afford this degree

of precision could then be estimated from standard

formulae or appropriate software packages. Presuming

that the observed difference between groups was also 10

units, the target width would be expected to span from zero

difference (10K10) to 20 units (10C10). The researcher

may thus believe that this sample size is just sufficient to

detect the smallest worthwhile effect of 10 units (i.e. to

distinguish the effect from no difference as the confidence

interval does not overlap the null value of zero). The sample

size estimation using this approach for our example requires
the following information: the required width or half-width

of the two-sided 95% confidence interval (20 units, or half-

width of 10 units) and the variability for the measure

(standard deviation of 20 units). This results in a required

sample size of just 31 in each group, compared with 86 in

each group estimated from the power analytic method.

Rearrangement of the conventional power analysis

formula reveals that a sample size of 31 in each group

would provide only 50% power to detect the smallest

worthwhile effect—a beta value or Type II error rate of 0.5.

Therefore, we would be accepting a risk of a ‘failed alarm’,

or missing a truly beneficial intervention, of 50%. This

apparent anomaly occurs, in part, due to the fact that the

variability (standard deviation) inputted into the sample size

equation a priori is only an estimate of the actual variability

exhibited in the subsequent study. Therefore, the actual

observed confidence interval—calculated from the study

data—may be shorter or longer that the target width. On

average, the observed confidence interval would be

expected to be wider (and hence include the value of zero

difference—the null) 50% of the time. Furthermore, the true

location of the parameter of interest (the mean difference in

pain scores between groups) is not accounted for. Various

methods have been advanced in an attempt to address these

perceived problems, but all still result in what many regard

as unacceptably small sample sizes, providing only

approximately 50–65% power to detect the smallest

worthwhile effect. The reader is referred to Daly (2000),

and associated references, for a fuller discussion. Of course,

one may choose a target confidence interval width that is not

based solely on distinguishing the experimental effect from

the statistical null. For example, a target width of 10 units

centred around the observed effect would require 123

participants in each group. As a rule of thumb, halving the

confidence interval width (doubling the precision of

estimation) requires approximately a four-fold increase in

sample size (123 versus 31 participants per group).

In our worked example in the previous main section, we

estimated the sample size required to detect a standardised

effect of half a standard deviation with 90% power, using a

two-sided test. This sample size is sufficient to distinguish

this effect from the mean between-group difference of zero

assumed under the null hypothesis. However, as suggested

by Kelley et al. (2003), this sample size may not define

the observed effect precisely. Assuming a noncentral

t-distribution for the standardised effect size (Cumming &

Finch, 2001) the 95% confidence interval for an effect of

0.5 standard deviations with a sample size of 86 participants

in each group ranges from 0.2 to 0.8. Therefore, although we

may observe an effect size that we would define as

‘moderate’ using Cohen’s (1988) criteria, the ‘true’ effect

in the population could be anything from small (0.2) to

large (0.8).

It is possible, of course, to combine the power analytic

and confidence interval width approaches to address such

issues. Kelley et al. (2003) detail the accuracy in parameter
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estimation approach (AIPE). As noted, we could choose a

sample size such that the expected width of the confidence

interval was sufficiently narrow. Let us assume that we

desire a confidence interval width of 0.4 (half-width of 0.2).

If this interval were centred around an observed effect size

of 0.5, the lower and upper bounds would be 0.3 and 0.7.

Although still a relatively wide interval, we could arguably

distinguish crudely our observed effect from either small

(0.2) or large (0.8C) effects, as these values lie outside the

95% confidence interval. This degree of precision of

estimation would require approximately 200 participants

in each group. Even more participants would be needed if

we wanted to address the issue of under- and over-coverage

of the observed confidence interval described in the

previous paragraph. This apparently large discrepancy

between the estimates from the power analytic approach

and the AIPE approach only occurs when we are trying to

detect moderate to large effects. With small effects, the

required sample size to distinguish the experimental effect

from the null value with reasonable power is also more

than adequate for defining the observed effect precisely.

For example, detecting a standardised effect size of 0.2

(two-tailed PZ0.05, powerZ90%) requires 527 partici-

pants per group. The 95% confidence interval for an effect

size of 0.2 with this sample size is approximately 0.1–0.3—

sufficiently precise to define the ‘true’ effect as ‘small’.
5. Conclusions

It is beyond the scope of a single article to address all of

the specific hurdles that may be encountered in sample size

planning. Hopefully, we have provided general concepts

and principles that transfer to many different scenarios and

research designs. Our example illustrated by the dialogue

was for a parallel group randomised controlled trial. The

underlying messages, however, translate to other common

designs. For instance, if the design is repeated measures or a

crossover type, the measure of variability required for the

estimates is the standard deviation of the expected

differences, rather than the between-subject standard

deviation. All other parameter value issues are the same.

What if your outcome variable is a dichotomous

percentage or proportion, such as the percentage ‘in pain’

versus ‘pain free’, in place of a continuous primary

outcome? In this instance, we would need to specify the

percentage ‘in pain’ in the control group and define the

minimum clinically important effect as some difference

from this proportion. For example, ‘on usual care we expect

50% of the control group to remain ‘in pain’ at follow-up,

compared to only 30% of the intervention group’. Other

than this, decisions regarding alpha, beta, and one-sided

versus two-sided tests are essentially equivalent to the

example presented. For more complex designs including,

for example, cluster randomised trials and trials with pre-

planned sub-group analyses sample size estimation is yet
more complex, and we would advise that expert assistance

be sought in these instances. Indeed, whatever the research

design, it is prudent to have one’s sample size estimations

checked and verified by an experienced biostatistician or

measurement specialist.

In this primer, we have attempted to demystify the murky

world of sample size estimation. Rather than present

formulae and number-crunch through hand-worked

examples, we elected to focus instead on the decision-

making process. Nomograms, tables, and dedicated statisti-

cal software for sample size estimation are widely available.

In our experience the confusion, particularly for novice

researchers, lies in the decisions and assumptions that

have to be made before the formulae can be employed. We

hope that increased understanding of these broad issues will

help researchers and research consumers alike. We believe

that a thorough and honest approach to sample size estimation

is vital in planning all research, perhaps particularly health

intervention research. However, we urge researchers, expert

peer—reviewers of articles and research funding proposals,

journal editors, ethics committee representatives, funding

body committee members—indeed, all of the ‘gatekeepers of

knowledge’—to maintain a balanced view of sample size

estimation. As Bachetti (2002, p. 1271) remarked:

Because of uncertainties inherent in sample size

planning, reviewers can always quibble with sample

size justifications-and they usually do. The infor-

mation needed to determine accurately the “right”

sample size (a murky concept in itself) is often much

more than available preliminary information.
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