Vulnerabilidade das microrregiões do Nordeste brasileiro à pandemia do novo coronavírus (SARS-CoV-2)

Rafael L. G. Raimundo¹ Kate P. Maia² Danilo G. Muniz³ Mauricio Cantor⁴ Paula Lemos-Costa⁵ Viviana M. Velásquez⁶ Leandro Giacobelli⁷ Irina Birskis-Barros⁸ Erika Marques Santana9 Marília Palumbo Gaiarsa¹⁰ Pamela Santana¹¹ Ana P. A. Assis¹² Lucas P. Medeiros¹³ Flavia M. D. Marquitti¹⁴ Wesley Dáttilo¹⁵ Cecilia S. Andreazzi¹⁶ Mathias M. Pires¹⁷ Paulo R. Guimarães Jr¹⁸ Eduardo X. F. G. Migon¹⁹

¹ Departamento de Engenharia e Meio Ambiente, Centro de Ciências Aplicadas e Educação (CCAE), Universidade Federal da Paraíba. Autor para correspondência: rafael.raimundo@ccae.ufpb.br

² Instituto de Biociências, Universidade de São Paulo.

³ Instituto de Biociências, Universidade de São Paulo.

⁴ Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina e Max Planck Institute of Animal Behaviour, Alemanha.

⁵ Department of Ecology and Evolution, University of Chicago, EUA.

⁶ Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba.

⁷ Instituto de Biociências, Universidade de São Paulo.

⁸ School of Natural Sciences, University of California, Merced, EUA

⁹ Instituto de Biociências, Universidade de São Paulo.

¹⁰ Department of Entomology, University of California, Riverside, EUA.

¹¹ Instituto de Biociências, Universidade de São Paulo.

¹² Instituto de Biociências, Universidade de São Paulo.

¹³ Department of Civil and Environmental Engineering, MIT, EUA.

¹⁴ Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas.

¹⁵ Instituto de Ecología AC, México.

¹⁶ Instituto Oswaldo Cruz - RJ

¹⁷ Instituto de Biologia, Universidade Estadual de Campinas

¹⁸ Instituto de Biociências, Universidade de São Paulo.

Laboratório de Estudos de Defesa, Escola de Comando e Estado-Maior do Exército. Autor para correspondência: eduardomigon@gmail.com

Sumário de resultados e recomendações

Este é o primeiro relatório do *Observatório COVID19*²⁰ - *Grupo: Redes de Contágio – Laboratório de Estudos de Defesa* para a região Nordeste do Brasil. Combinamos dados de casos confirmados do novo coronavírus (SARS-CoV-2) para o Nordeste, conforme disponível até o dia 02/04, com análises estruturais da rede de rotas rodoviárias intra e interestaduais para estimarmos a vulnerabilidade e potencial influência das microrregiões nordestinas na propagação da doença.

1.1. Principais resultados até o momento:

- I. A rede de fluxo rodoviário nordestina tem 05 módulos que indicam conjuntos de microrregiões mais conectadas entre si do que com outras microrregiões nordestinas (figs. 1 e 2): Módulo NE1: Maranhão e Piauí, com exceção de uma microrregião piauiense; Módulo NE2: Ceará e uma microrregião piauiense; Módulo NE3: Rio Grande do Norte e Paraíba; Módulo NE4: Pernambuco, Alagoas e uma microrregião baiana; e NE5: Bahia e Sergipe, exceto uma microrregião baiana.
- II. Sete microrregiões densamente povoadas têm possivelmente forte influência sobre a dinâmica global da epidemia na região Nordeste: Fortaleza (CE), Teresina (PI), Recife (PE), Vale do Ipojuca (Caruaru-PE), João Pessoa (PB), Maceió (AL) e Campina Grande (PB). Com menor influência global, mas com influência regional marcada, destacam-se as microrregiões de Salvador (BA), Feira de Santana (BA) e Natal (RN). Um grande número de microrregiões tem papel estrutural de conectores intermodulares da rede (Fig. 3).
- III. O Estado de Pernambuco apresenta nove microrregiões classificadas como de alta vulnerabilidade à chegada da epidemia e que ainda não apresentam infectados: Itamaracá, Suape, Vitória de Santo Antão, Alto Capibaribe, Médio Capibaribe, Brejo Pernambucano, Garanhuns, Pajeú e Sertão do Motoxó (Fig. 4, Tabela 1).
- IV. Dentre as cinco microrregiões com alto potencial de emissão de pacientes infectados, quatro não incluem capitais de Estado: Mata Setentrional Pernambucana (PE), Mata Meridional Pernambucana (PE), Vale do Ipojuca (PE) e Campina Grande (PB). A microrregião de Recife também se enquadra nessa categoria (Fig. 4, Tabela 1).

_

²⁰ https://covid19br.github.io/

1.2. Recomendações

- I. Sugere-se ao Governo do Estado de Pernambuco planejamento para uma potencial situação epidemiológica emergencial em escala estadual. Essa previsão está baseada na análise estrutural da rede de fluxos rodoviários, que indica a concentração de várias microrregiões com (i) alta centralidade topológica, (ii) contíguas e (iii) com alta vulnerabilidade à propagação da pandemia ou (iv) alta probabilidade de funcionarem como núcleos propagadores dentro da dinâmica epidemiológica em escala geográfica. Tais microrregiões se distribuem nas mesorregiões metropolitana de Recife, Mata Pernambucana, Agreste Pernambucano e Sertão Pernambucano.
- II. Sugere-se ao Governo do Estado da Paraíba e às prefeituras municipais da microrregião de Campina Grande (PB) reforçarem junto à população a conscientização sobre medidas de isolamento social, uma vez que se trata de potencial núcleo emissor de pessoas infectadas com influência sobre a dinâmica epidemiológica em escala geográfica. Até a data de 03/04/2020, a microrregião registrava apenas 2 casos confirmados de COVID-19 -- na cidade de Campina Grande²¹ -- de forma que campanhas de conscientização da população sobre medidas de isolamento social podem contribuir para evitar ou postergar ao máximo o estágio de transmissão comunitária e o crescimento exponencial do número de casos nessa microrregião identificada como potencial núcleo propagador da epidemia em escala geográfica.
- III. Recomenda-se a estrita observação das recomendações das autoridades sanitárias e o reforço das medidas de isolamento social em todas as microrregiões, inclusive aquelas ainda não afetadas ou classificadas como de vulnerabilidade intermediária ou baixa, independentemente das análises aqui apresentadas -- cujo escopo refere-se à vulnerabilidade e influência das microrregiões nas redes de propagação da epidemia em escala geográfica e não implicam portanto, em qualquer tipo de avaliação, inferência ou recomendação sobre as situações locais da severidade da epidemia de SARS-CoV-2.
- **Tabela 1.** Sumário das microrregiões nordestinas com altos índices de vulnerabilidade à chegada de pessoas infectadas com SARS-CoV-2, com base em suas centralidades nas redes de fluxos rodoviários da região Nordeste. Microrregiões sem casos confirmados em 02/04/2010 estão classificadas como altamente vulneráveis. Microrregiões que já tinham casos confirmados nessa data estão classificadas como núcleo propagadores de alta centralidade, a qual refere-se à potencial influência sobre a dinâmica geográfica da epidemia em função de sua centralidade topológica na rede de fluxos rodoviários. As microrregiões estão agrupadas conforme seus respectivos estados e mesorregiões.

_

²¹ Cota, W. (2020). <u>Monitoramento do número de casos de COVID-19 no Brasil</u>. Acessado em 02/04/2020.

Estado de Pernambuco		
Mesorregião Metropolitana de F	Recife	
Microrregião	Casos confirmados ²²	Classificação
Recife	91	Núcleo propagador de alta centralidade
Itamaracá	0	Microrregião altamente vulnerável
Suape	0	Microrregião altamente vulnerável
Mesorregião da Mata Pernambu	ıcana	
Microrregião	Casos confirmados	Classificação
Mata Setentrional Pernambucana	2	Núcleo propagador de alta centralidade
Mata Meridional Pernambucana	1	Núcleo propagador de alta centralidade
Vitória de Santo Antão	0	Microrregião altamente vulnerável
Mesorregião do Agreste Pernar	mbucano	
Microrregião	Casos confirmados	Classificação
Vale do Ipojuca	2	Núcleo propagador de alta centralidade
Brejo Pernambucano	0	Microrregião altamente vulnerável
Alto Capibaribe	0	Microrregião altamente vulnerável
Microrregião	Casos confirmados	Classificação
Médio Capibaribe	0	Microrregião altamente vulnerável
Garanhuns	0	Microrregião altamente vulnerável

²² Casos confirmados conforme disponibilizado por W. Cota no site <u>Monitoramento do número de casos de COVID-19 no Brasil</u>. Acessado em 02 de Abril de 2020.

Mesorregião do Sertão Pernambucano				
Microrregião	Casos confirmados	Classificação		
Pajeú	0	Microrregião altamente vulnerável		
Sertão do Moxotó	0	Microrregião altamente vulnerável		
Paraíba	-			
Mesorregião do Agreste I	Paraibano			
Microrregião	Casos confirmados	Classificação		
Campina Grande	2	Núcleo propagador de alta centralidade		

2. Detalhamento das análises e resultados

2.1. Estrutura da rede rodoviária e papéis topológicos das microrregiões.

Integramos dados sobre rotas rodoviárias, análises estruturais de redes e princípios de epidemiologia para predizer áreas com maior probabilidade de chegada de pessoas com SARS-CoV-2 e áreas com maior chance de enviar pessoas infectadas a outros locais. Usamos dados do fluxo de transporte rodoviário intermunicipal nos estados da região nordeste (IBGE, 2016) para criar uma rede na qual cada microrregião nordestina é representada por um ponto, e viagens de ônibus ligando diferentes microrregiões são representados por linhas. Realizamos então uma análise de cartografia de redes que detecta módulos (Newman 2006, Brandes *et al.* 2008). Módulos rodoviários são grupos de microrregiões mais conectadas entre si por fluxos rodoviários do que com o restante das microrregiões da rede (**Fig. 1**).

Foram detectados 5 módulos formados por: NE1: Maranhão e Piauí, com exceção de uma microrregião piauiense; NE2: Ceará e uma microrregião piauiense; NE3: Rio Grande do Norte e Paraíba; NE4: Pernambuco, Alagoas e uma microrregião baiana; e NE5: Bahia e Sergipe, exceto uma microrregião baiana (**Fig. 2**).

Computamos descritores dos papéis topológicos das microrregiões, com a ponderação de sua conectividade (influência) considerada em dois níveis: dentro de seus módulos (z), e com microrregiões de outros módulos (c) (Amaral et al. 2000).

De forma heurística, identificamos 3 grupos de microrregiões com potencial relevância central na dinâmica epidemiológica em escala geográfica (Fig. 3). O

primeiro grupo de áreas relevantes para a dinâmica epidemiológica global inclui 7 microrregiões com valores altos de conectividade intramodular (z) e intermodular (c): Fortaleza (CE), Teresina (PI), Recife (PE), Vale do Ipojuca (Caruaru - PE), João Pessoa (PB), Maceió (AL) e Campina Grande (PB).

Essas microrregiões são nós centrais da rede de contágio da região Nordeste, conectando-se dentro e entre módulos (**Figura 3**). Um segundo grupo de microrregiões com potencial influência global na dinâmica epidemiológica é formado por áreas com menor conectividade global (baixo c), mas localmente bastante conectadas (alto z) e que podem catalisar a propagação regional da epidemia, incluindo **Salvador (BA), Feira de Santana (BA) e Natal (RN)**. Por fim, um grande número de microrregiões atuam como conectores intermodulares da rede (alto c, **Fig. 3**).

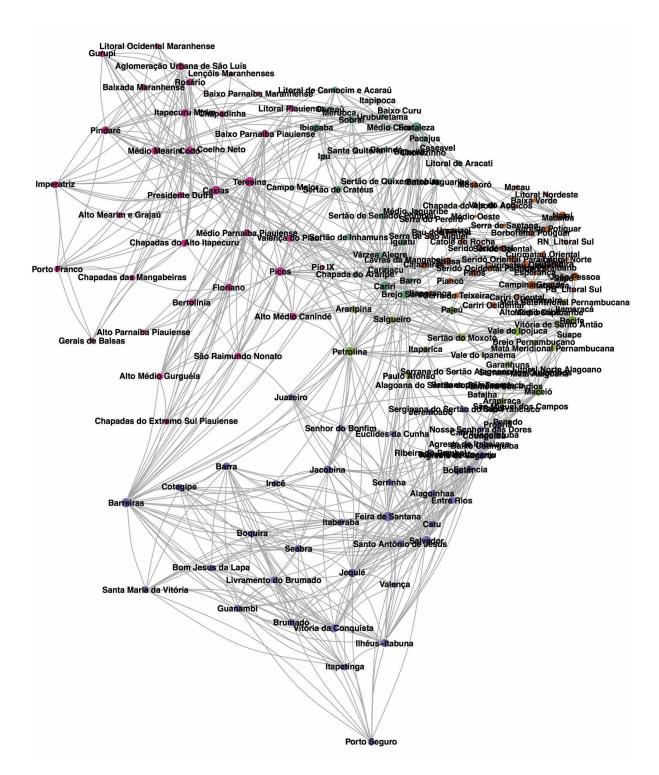


Figura 1. Rede que descreve o fluxo rodoviário entre as microrregiões do Nordeste do Brasil. Microrregiões com as mesmas cores pertencem ao mesmo módulo rodoviário, isto é, são altamente interconectadas por fluxos de pessoas e, portanto, podem apresentar dinâmica epidemiológica relativamente sincrônica.

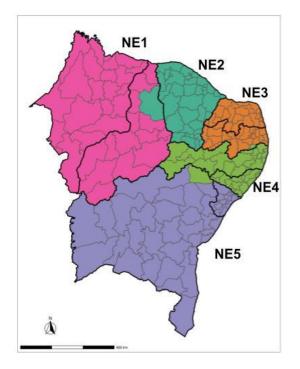
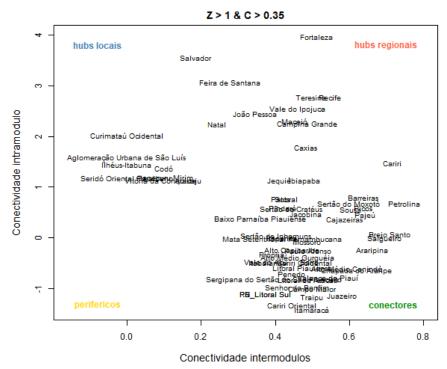



Figura 2. Projeção geográfica dos cinco módulos rodoviários segundo rede fluxos rodoviários, indicados por diferentes cores, sobre o mapa do Nordeste brasileiro. NE1, formado por Maranhão e Piauí, com exceção de uma microrregião piauiense. NE2: formado por Ceará e uma microrregião piauiense. NE3, formado por Rio Grande do Norte е Paraíba. NE4: formado Pernambuco, Alagoas e uma microrregião baiana. NE5: formado por Bahia e Sergipe, exceto uma microrregião baiana. As linhas pretas mais grossas indicam limites estaduais e as linhas pretas mais finas indicam os limites de cada microrregião. Note que os módulos regiões não representam políticoadministrativas sim conjuntos microrregiões mais conectadas entre elas por

fluxos rodoviários do que com o restante das microrregiões nordestinas.

Figura 3. Papéis
estruturais das
microrregiões nordestinas
na rede de fluxo
rodoviário. Conectividades
intermodular (c) e
intramodular (z). Hubs locais
têm valores altos de z, i.e.,
são muito conectados com
microrregiões no mesmo
módulo. Conectores
apresentam altos valores de
c e, portanto, alta
conectividade com outros

módulos. Se uma região tem os valores de c e z altos, é um hub regional. Nesse gráfico foram incluídas apenas microrregiões com c > 0.35 e z > 1.

2.2. Análise de vulnerabilidade.

As análises descritas acima caracterizam a posição relativa das microrregiões na estrutura da rede, mas podem não capturar adequadamente seus efeitos na propagação geográfica da epidemia, particularmente considerando-se o grande número de rotas indiretas que compõem uma rede geográfica com a dimensão do Nordeste brasileiro. De forma complementar, portanto, usamos uma técnica apropriada para a descrição da propagação de efeitos em redes complexas que considera a posição das microrregiões nordestinas no conjunto de rotas diretas e indiretas que compõem a rede geográfica. Especificamente, adaptamos uma medida que permite computar rotas diretas e indiretas entre microrregiões denominada centralidade de Katz (Katz, 1956). Para calcular a centralidade de Katz para as microrregiões nordestinas, computamos a matriz de efeitos diretos e indiretos (Katz, 1956; Guimarães et al., 2017): $T = (I - rQ)^{-1}$, na qual I é a matriz identidade, r é um fator que pesa o efeito de rotas rodoviárias que envolvam múltiplas microrregiões e Q é a matriz de fluxo rodoviário entre microrregiões. Nossa abordagem supõe, como aproximação, que se uma microrregião apresenta casos, a partir dela a doença pode propagar-se para uma região que dela receba passageiros pelo sistema rodoviário.

Para informar a matriz de efeitos diretos e indiretos conforme descrito acima, utilizamos dados de circulação de ônibus entre as microrregiões dos estados conforme providos pelo Instituto Brasileiro de Geografia e Estatística²³. Dados dos casos confirmados do SARS-CoV-2 nas microrregiões nordestinas foram obtidos no site Monitoramento do número de casos de COVID-19 no Brasil (Cota, 2020), acessado em 02/04/2020, conforme informados pelo Ministério da Saúde e Secretarias de Estado de Saúde. Apenas consideramos as rotas rodoviárias diretas e indiretas que partem de áreas com casos comprovados do SARS-CoV-2. Calculamos então a centralidade Katz de entrada de todas as microrregiões como uma medida de vulnerabilidade: quanto maior a centralidade, maior fluxo de passageiros vindos de microrregiões com SARS-CoV-2 confirmado. Como o fluxo de passageiros depende do tamanho populacional das microrregiões, ponderamos a centralidade de Katz conforme tamanhos populacionais.

Para obter uma medida da potencial influência de cada microrregião como emissora do SARS-CoV-2, anotamos as microrregiões mais vulneráveis e que já possuem casos confirmados. Quando maior esse valor, maior o fluxo de passageiros que saem de uma região onde o SARS-CoV-2 foi confirmado para outras microrregiões por meio de rotas diretas e indiretas. Nessa análise, microrregiões onde o SARS-CoV-2 não foi observada têm potencial de emissão zero na propagação da epidemia. Novamente, dividimos os valores pelo máximo observado para que a medida ficasse padronizada para variar entre zero e um. Os

²³ Ligações Rodoviárias e Hidroviárias - IBGE | 2016.

resultados foram sumarizados em um mapa com as microrregiões agrupadas em três categorias de risco (Fig. 4).

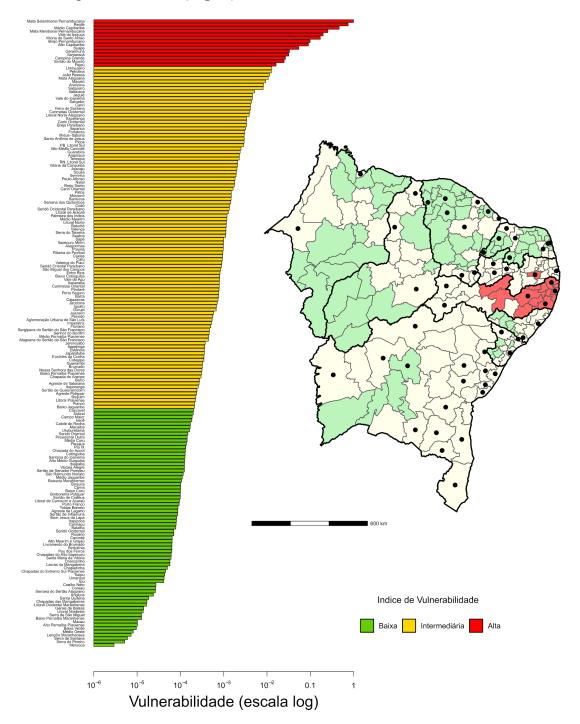


Figura 4. Categorização das microrregiões nordestinas quanto à vulnerabilidade perante a pandemia de SARS-CoV-2 em 02/04/2020. Microrregiões marcadas com um ponto preto têm casos confirmados do novo coronavírus. As barras mostram o valor do índice de vulnerabilidade (em escala log) de cada microrregião. Dado o grande número de microrregiões, os rótulos das barras não são legíveis. Dados para cada região podem ser obtidos no Anexo 1.

A categorização dos grupos em graus de vulnerabilidade foi definida de forma heurística com objetivo de facilitar a tomada de decisões. O Estado de Pernambuco concentra nove microrregiões altamente vulneráveis à chegada de pessoas infectadas com o SARS-CoV-2 e que ainda não têm casos confirmados: Itamaracá, Suape, Vitória de Santo Antão, Alto Capibaribe, Médio Capibaribe, Brejo Pernambucano, Garanhuns, Pajeú e Sertão do Motoxó (Fig. 4, Tabela 1). Pernambuco também concentra quatro das microrregiões cuja centralidade topológica indica que podem, no contexto geográfico da epidemia, atuar como núcleos propagadores que emitem pessoas infectadas: Mata Setentrional Pernambucana (PE), Recife (PE), Mata Meridional Pernambucana (PE) e Vale do Ipojuca (PE). Em adição, uma microrregião paraibana -- Campina Grande -- também enquadra-se na categoria de potencial núcleo propagador da epidemia em escala geográfica, dada sua alta centralidade topológica (Fig. 4, Anexo 1) e ao fato de já ter dois casos de COVID-19 registrados em 02/04/2020 (Cota, 2020).

4. Ressalvas e direções de refinamento das análises

4.1. Escopo da análise.

A indicação de maior vulnerabilidade e recomendações específicas para Pernambuco e Paraíba **não deve** ser interpretada como indicativo de menor atenção às demais áreas, particularmente considerando-se o crescimento do número de casos em diferentes capitais nordestinas e suas regiões metropolitanas densamente povoadas que não foram aqui mencionadas. Ressalva-se que as análises e recomendações apresentadas neste relatório estão focadas em prover, com base na análise da rede de fluxos rodoviários, previsões empiricamente fundamentadas sobre microrregiões com possível papel-chave na disseminação geográfica da pandemia de SARS-Cov-2, bem como indicar microrregiões ainda sem casos confirmados de COVID-19 cuja centralidade topológica implicam alta vulnerabilidade à chegada de pessoas infectadas.

Dessa forma, o propósito das análises é prover aos tomadores de decisão informações estratégicas para mitigar a expansão geográfica da pandemia no Nordeste brasileiro, sem qualquer prejuízo às ações locais atualmente em curso em diferentes Estados. De fato, epidemias possuem dois níveis de propagação distintos, apesar de correlacionados, que são a propagação local e a propagação geográfica, sendo que o escopo de nossas análises se refere à última. As dinâmicas de propagação local das infecções estão relacionadas à rede de contatos entre pessoas. A propagação geográfica depende de como essa rede sociais de contatos estendem-se em escalas espaciais mais amplas, acabando por conectar diferentes microrregiões. Nossa análise pode apenas ser usada para ajudar a identificar locais que poderão ser mais rapidamente atingidos pela epidemia, mas não permite identificar o quão grande será o número de infectados em cada microrregião. Um

próximo passo importante para refinar nossas análises envolve a obtenção de estimativas locais para o crescimento de número de casos e suas implicações para os padrões geográficos de propagação da epidemia -- em outras palavras, devemos relacionar como as dinâmicas de contágio dentro das microrregiões influencia a propagação da epidemia entre microrregiões.

- 4.2. Dados sobre casos confirmados de COVID-19: Uma limitação para o refinamento das análises e modelagem da dinâmica epidemiológica em escala geográfica é a ausência de dados disponibilizados rapidamente, por município, sobre o número de casos confirmados de COVID-19. Por exemplo, pretendemos aplicar ferramentas de *machine learning* -- algoritmos computacionais que fazem uso de dados anteriores para gerar previsões uma vez que novos dados são obtidos -- para, diária e automaticamente, verificarmos e refinarmos indicadores estratégicos. Porém, sem a atualização dos dados sobre os pacientes por município, tal abordagem é inviável. Ainda, há outras fontes de erro nos dados, principalmente subnotificações, demora no aparecimento dos sintomas e ausência de testes diagnósticos em larga escala.
- **4.3. Dados do fluxo rodoviário**. Usamos dados do transporte rodoviário intermunicipal e interestadual dos Estados do nordeste brasileiro obtidos pelo IBGE²⁴. Esses dados são fruto de uma pesquisa feita com o uso de questionários deixados nos guichês dos terminais rodoviários e em pontos do lado de fora dos terminais. Desta forma, essa amostragem do fluxo rodoviário e nossos resultados podem ser influenciados por problemas de amostragem, particularmente a subamostragem. Estamos tentando outras formas de estimar o fluxo entre locais, como por exemplo usando um modelo gravitacional ponderado pelos tamanhos populacionais de cada microrregião. Porém, qualquer outra estimativa de fluxo rodoviário (ônibus, carros, veículos por pedágios, por exemplo) poderia nos ajudar a validar a robustez de nossas previsões. Ainda, é importante notar que não estamos considerando o fluxo aeroviário de pessoas, o que provavelmente subestima o papel das microrregiões nas quais situam-se os aeroportos.
- **4.4. Acurácia.** Apesar das fontes de erro listadas acima, ao usar uma abordagem similar para predizer a propagação da epidemia do SARS-CoV-2 entre estados por meio da rede aérea, a nossa abordagem explicou > 56% da variação das datas do primeiro registro de COVID-19 entre os estados brasileiros (https://guimaraeslabbr.weebly.com/voos.html).

_

²⁴ <u>Ligações Rodoviárias e Hidroviárias - IBGE | 2016</u>

5. Agradecimentos

Nossos especiais agradecimentos a Marcelo Gomes (Fiocruz), a Roberto Kraenkel (IFT-UNESP) e Paulo Inácio Prado (IB-USP).. Também agradecemos à FAPESP, CAPES e CNPq por financiarem nossos grupos de pesquisa.

6. Referências

- Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the national academy of sciences, 97(21), 11149-11152.
- Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. (2008). On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering. 20 (2): 172–188.
- Cota, W. (2020). Número de casos confirmados de COVID-19 no Brasil. Disponível em https://labs.wesleycota.com/sarscov2/br/#main. Acessado em 02 de Abril de 2020.
- Guimarães, P. R.; Pires, M. M.; Jordano, P; Bascompte, J; Thompson, J. N. (2017). Indirect effects drive coevolution in mutualistic networks. Nature, 550: 511-514.
- IBGE, Instituto Brasileiro de Geografia e Estatística. Censo Demográfico 2010: Resultados gerais da amostra [Internet]. (2010). Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/censo2010/resultados_gerais amostra/resultados_gerais amostra tab uf microdados.shtm.
- IBGE, Instituto Brasileiro de Geografia e Estatística. Ligações Rodoviárias e Hidrovias. (2016). Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/redes-e-fluxos-geograficos/15794-rodoviarias-e-hidroviarias.html?=&t=o-que-e.
- Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43.
- Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America. 103 (23): 8577–8696.

Anexo 1. Índice de vulnerabilidade à propagação da epidemia de SARS-CoV-2 das microrregiões dos Estados do nordeste brasileiro. Quanto maior for o valor de seu índice de vulnerabilidade, maior será o potencial de uma microrregião para receber pessoas com SARS-CoV-2 em 02/04/2020. Para regiões já infectadas, a interpretação é de que quanto maior for o índice, maior também será o potencial daquela microrregião em servir como núcleo de propagação (emissão) de infectados para outras microrregiões. Os valores foram padronizados pelo máximo para variar entre 0 e 1. Por simplicidade, índices de vulnerabilidade menores que 0.001 foram arredondados para zero.

Microrregião	UF	Casos	Índice de Vulnerabilidade	Categoria
Mata Setentrional Pernambucana	Pernambuco	2	1	alto
Recife	Pernambuco	91	0.7513	alto
Médio Capibaribe	Pernambuco	0	0.4644	alto
Mata Meridional Pernambucana	Pernambuco	1	0.2553	alto
Vale do Ipojuca	Pernambuco	2	0.199	alto
Vitória de Santo Antão	Pernambuco	0	0.1706	alto
Brejo Pernambucano	Pernambuco	0	0.0988	alto
Alto Capibaribe	Pernambuco	0	0.0903	alto
Suape	Pernambuco	0	0.0542	alto
Garanhuns	Pernambuco	0	0.0331	alto
Itamaracá	Pernambuco	0	0.0318	alto

Campina Grande	Paraíba	2	0.0268	alto
Sertão do Moxotó	Pernambuco	0	0.0249	alto
Pajeú	Pernambuco	0	0.0162	alto
Umbuzeiro	Paraíba	0	0.0129	intermediário
Petrolina	Pernambuco	2	0.0126	intermediário
João Pessoa	Paraíba	23	0.0115	intermediário
Mata Alagoana	Alagoas	0	0.0107	intermediário
Maceió	Alagoas	17	0.0094	intermediário
Araripina	Pernambuco	1	0.0083	intermediário
Salgueiro	Pernambuco	0	0.0081	intermediário
Itabaiana	Paraíba	0	0.0051	intermediário
Jequié	Bahia	1	0.0046	intermediário
Vale do Ipanema	Pernambuco	0	0.0046	intermediário
Salvador	Bahia	184	0.0044	intermediário
Cariri	Ceará	1	0.0042	intermediário
Feira de Santana	Bahia	22	0.0042	intermediário

Curimataú Ocidental	Paraíba	0	0.004	intermediário
Litoral Norte Alagoano	Alagoas	0	0.0039	intermediário
Esperança	Paraíba	0	0.0034	intermediário
Cariri Ocidental	Paraíba	0	0.0034	intermediário
Brejo Paraibano	Paraíba	0	0.0034	intermediário
Itaparica	Pernambuco	0	0.0032	intermediário
Fortaleza	Ceará	432	0.0031	intermediário
Ilhéus-Itabuna	Bahia	20	0.003	intermediário
Santo Antônio de Jesus	Bahia	0	0.003	intermediário
Picos	Piauí	0	0.003	intermediário
PB_Litoral Sul	Paraíba	0	0.0029	intermediário
Alto Médio Canindé	Piauí	1	0.0025	intermediário
Guarabira	Paraíba	0	0.0024	intermediário
Arapiraca	Alagoas	0	0.0023	intermediário
Teresina	Piauí	17	0.0023	intermediário
RN_Litoral Sul	Rio Grande do Norte	0	0.0021	intermediário

Vitória da Conquista	Bahia	1	0.0021	intermediário
Aracaju	Sergipe	20	0.002	intermediário
Sousa	Paraíba	1	0.002	intermediário
Serrinha	Bahia	1	0.0019	intermediário
Paulo Afonso	Bahia	0	0.0018	intermediário
Natal	Rio Grande do Norte	69	0.0018	intermediário
Brejo Santo	Ceará	0	0.0018	intermediário
Cariri Oriental	Paraíba	0	0.0016	intermediário
Patos	Paraíba	1	0.0015	intermediário
Mossoró	Rio Grande do Norte	22	0.0015	intermediário
Barreiras	Bahia	1	0.0015	intermediário
Serrana dos Quilombos	Alagoas	0	0.0015	intermediário
Codó	Maranhão	0	0.0014	intermediário
Seridó Ocidental Paraibano	Paraíba	0	0.0013	intermediário
Litoral de Aracati	Ceará	1	0.0013	intermediário
Palmeira dos Índios	Alagoas	0	0.0012	intermediário

Médio Mearim	Maranhão	0	0.0012	intermediário
Litoral Norte	Paraíba	0	0.0012	intermediário
Baturité	Ceará	0	0.0011	intermediário
Valença	Bahia	0	0.0011	intermediário
Serra do Teixeira	Paraíba	0	0.0011	intermediário
Seabra	Bahia	0	0.0011	intermediário
Sapé	Paraíba	0	0.001	intermediário
Itapecuru Mirim	Maranhão	0	0.001	intermediário
Alagoinhas	Bahia	3	0.001	intermediário
Propriá	Sergipe	2	0.001	intermediário
Ribeira do Pombal	Bahia	1	0.001	intermediário
Caxias	Maranhão	0	0	intermediário
Catu	Bahia	1	0	intermediário
Valença do Piauí	Piauí	0	0	intermediário
Seridó Oriental Paraibano	Paraíba	0	0	intermediário
São Miguel dos Campos	Alagoas	0	0	intermediário

Entre Rios	Bahia	1	0	intermediário
Baixo Cotinguiba	Sergipe	0	0	intermediário
Vale do Açu	Rio Grande do Norte	2	0	intermediário
Itaberaba	Bahia	0	0	intermediário
Curimataú Oriental	Paraíba	0	0	intermediário
Pindaré	Maranhão	0	0	intermediário
Porto Seguro	Bahia	19	0	intermediário
Barra	Bahia	1	0	intermediário
Cajazeiras	Paraíba	0	0	intermediário
Jacobina	Bahia	0	0	intermediário
Iguatu	Ceará	0	0	intermediário
Gurupi	Maranhão	0	0	intermediário
Juazeiro	Bahia	2	0	intermediário
Penedo	Alagoas	1	0	intermediário
Aglomeração Urbana de São Luís	Maranhão	68	0	intermediário
Imperatriz	Maranhão	3	0	intermediário

Floriano	Piauí	0	0	intermediário
Sergipana do Sertão do São Francisco	Sergipe	1	0	intermediário
Senhor do Bonfim	Bahia	0	0	intermediário
Médio Parnaíba Piauiense	Piauí	0	0	intermediário
Alagoana do Sertão do São Francisco	Alagoas	0	0	intermediário
Jeremoabo	Bahia	0	0	intermediário
Itapetinga	Bahia	1	0	intermediário
Estância	Sergipe	0	0	intermediário
Japaratuba	Sergipe	0	0	intermediário
Euclides da Cunha	Bahia	0	0	intermediário
Cotegipe	Bahia	0	0	intermediário
Guanambi	Bahia	0	0	intermediário
Brumado	Bahia	5	0	intermediário
Nossa Senhora das Dores	Sergipe	0	0	intermediário
Baixo Parnaíba Piauiense	Piauí	0	0	intermediário
Chapada do Araripe	Ceará	0	0	intermediário

Barro	Ceará	1	0	intermediário
Agreste de Itabaiana	Sergipe	0	0	intermediário
Itaporanga	Paraíba	0	0	intermediário
Sertão de Quixeramobim	Ceará	2	0	intermediário
Agreste Potiguar	Rio Grande do Norte	2	0	intermediário
Boquim	Sergipe	0	0	intermediário
Litoral Piauiense	Piauí	1	0	intermediário
Piancó	Paraíba	1	0	intermediário
Baixo Jaguaribe	Ceará	0	0	intermediário
Cascavel	Ceará	1	0	baixo
Sobral	Ceará	5	0	baixo
Campo Maior	Piauí	0	0	baixo
Irecê	Bahia	1	0	baixo
Catolé do Rocha	Paraíba	0	0	baixo
Macaíba	Rio Grande do Norte	6	0	baixo
Uruburetama	Ceará	0	0	baixo

Seridó Oriental	Rio Grande do Norte	0	0	baixo
Presidente Dutra	Maranhão	0	0	baixo
Médio Curu	Ceará	0	0	baixo
Pacajus	Ceará	0	0	baixo
Pio IX	Piauí	0	0	baixo
Chapada do Apodi	Rio Grande do Norte	1	0	baixo
Cotinguiba	Sergipe	0	0	baixo
Santana do Ipanema	Alagoas	0	0	baixo
Alto Médio Gurguéia	Piauí	0	0	baixo
Ibiapaba	Ceará	1	0	baixo
Várzea Alegre	Ceará	0	0	baixo
Sertão de Senador Pompeu	Ceará	0	0	baixo
São Raimundo Nonato	Piauí	0	0	baixo
Médio Jaguaribe	Ceará	0	0	baixo
Baixada Maranhense	Maranhão	0	0	baixo
Boquira	Bahia	0	0	baixo

Carira	Sergipe	0	0	baixo
Baixo Curu	Ceará	0	0	baixo
Borborema Potiguar	Rio Grande do Norte	0	0	baixo
Sertão de Cratéus	Ceará	0	0	baixo
Litoral de Camocim e Acaraú	Ceará	0	0	baixo
Porto Franco	Maranhão	0	0	baixo
Tobias Barreto	Sergipe	0	0	baixo
Agreste de Lagarto	Sergipe	0	0	baixo
Sertão de Inhamuns	Ceará	0	0	baixo
Bom Jesus da Lapa	Bahia	0	0	baixo
Itapipoca	Ceará	0	0	baixo
Caririaçu	Ceará	0	0	baixo
Batalha	Alagoas	0	0	baixo
Seridó Ocidental	Rio Grande do Norte	1	0	baixo
Rosário	Maranhão	0	0	baixo
Canindé	Ceará	0	0	baixo

Alto Mearim e Grajaú	Maranhão	0	0	baixo
Livramento do Brumado	Bahia	0	0	baixo
Bertolínia	Piauí	0	0	baixo
Pau dos Ferros	Rio Grande do Norte	0	0	baixo
Chapadas do Alto Itapecuru	Maranhão	0	0	baixo
Santa Maria da Vitória	Bahia	0	0	baixo
Chorozinho	Ceará	0	0	baixo
Lavras da Mangabeira	Ceará	0	0	baixo
Chapadinha	Maranhão	0	0	baixo
Chapadas do Extremo Sul Piauiense	Piauí	0	0	baixo
Traipu	Alagoas	0	0	baixo
Umarizal	Rio Grande do Norte	0	0	baixo
lpu	Ceará	0	0	baixo
Coelho Neto	Maranhão	0	0	baixo
Coreaú	Ceará	0	0	baixo

Serrana do Sertão Alagoano	Alagoas	0	0	baixo
Serrana do Serrao Alagoano	Alagoas	U	0	Daixo
Angicos	Rio Grande do Norte	0	0	baixo
Santa Quitéria	Ceará	1	0	baixo
Chapadas das Mangabeiras	Maranhão	0	0	baixo
Litoral Ocidental Maranhense	Maranhão	0	0	baixo
Gerais de Balsas	Maranhão	0	0	baixo
Litoral Nordeste	Rio Grande do Norte	0	0	baixo
Serra de São Miguel	Rio Grande do Norte	1	0	baixo
Baixo Parnaíba Maranhense	Maranhão	0	0	baixo
Macau	Rio Grande do Norte	0	0	baixo
Alto Parnaíba Piauiense	Piauí	0	0	baixo
Baixa Verde	Rio Grande do Norte	0	0	baixo
Médio Oeste	Rio Grande do Norte	0	0	baixo
Lençóis Maranhenses	Maranhão	0	0	baixo

Serra de Santana	Rio Grande do Norte	0	0	baixo
Serra do Pereiro	Ceará	0	0	baixo
Meruoca	Ceará	0	0	baixo